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Abstract

How does the time bu�er (slack) in an operating system a�ect its performance, and why?

In this paper, we consider operating systems which have signi�cant uncertainty associated with

the feasible start time, thus making the actual (or available) time bu�er distinct from planned

(or scheduled) time bu�er. The article proposes a stylized model that explicitly accounts

for operational �exibility, and examines how these two time bu�ers (scheduled and actual)

a�ect delays. In addition, we also evaluate the empirical content of our model by taking its

predictions to the real-world data from the domestic airline industry, and examine the role of

time bu�ers in driving operating performance (delays). Our empirical results demonstrate that,

consistent with our stylized model, both scheduled and actual time bu�ers a�ect operating

performance. Speci�cally, smaller actual time bu�ers and larger scheduled time bu�ers are

associated with greater delays. Moreover, consistent with our model, we �nd that both these

e�ects are moderated by operating �exibility. Overall, our results highlight the importance

of understanding both the direct e�ect of time bu�ers and the role of resource �exibility to

manage operational performance.
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1 Introduction

Managing many operating systems involves building schedules (plans) that outline the time

available to complete a sequence of operational1 tasks along with the associated deadline

for completion of the task. For instance, in knowledge-intensive domains such as project

management, start time of an activity is planned depending on when the preceding activity

completes and based on the deadline (for instance, see Kelley and Walker 1959, Berman

1964). Similarly, in made-to-order manufacturing, �rms plan their production schedule based

on the delivery date and when the inputs (raw materials) become available (Rajagopalan

2002).

In all such operating systems, the scheduled time bu�er - which we de�ne as the time from

the planned start of the activity to the time of deadline - is only a tentative projection. The

actual start time depends on several variables, and even with a plan that requires starting an

activity at a speci�c given time, the actual start time is often subject to many uncertainties

such as late completion of preceding activities. Hence, the available time bu�er or the actual

time bu�er - which we de�ne as the time from the actual start time of the activity to the

time of deadline - might be very di�erent from the scheduled time bu�er. This article is

concerned with understanding how the time bu�ers (scheduled and actual) in�uence the

performance of general operating systems.

We motivate our study with a speci�c example from the service-oriented airline industry:

Airlines develop detailed plans which lay out when a speci�c aircraft is scheduled to arrive at

and depart from an airport. This plan determines the scheduled time bu�er, the planned time

(scheduled ground-time) that the airlines have available to conduct all the activities such as

deplane arriving passengers, cleaning and refueling the craft, and boarding new passengers.

But the uncertain actual arrival time of the aircraft on the day of operation implies that

the actual time bu�er (actual ground-time) available might be di�erent from the scheduled

time bu�er. This might a�ect operating performance measured through missed deadlines

1We use the terms operational and operating interchangeably throughout the paper.
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Figure 1: Departure delays for domestic US �ights in November 2012.

and departure delays.

Using the publicly available data from Bureau of Transportation Statistics (BTS) web-

site2, we constructed the scatter plots in Figure 1, that show the �tted lines for �ight de-

parture delays as a function of actual time bu�er (left) and scheduled time bu�er (right).

The e�ect of the actual time bu�er on operating performance is intuitive and merits lim-

ited discussion. Speci�cally, one should expect that when the actual time available is lower

(higher), the operating performance is likely to be poorer (better). However, the e�ect of

the scheduled time bu�er, as can be seen in the right panel of Figure 1, is more subtle.

Indeed, while one may anticipate that the scheduled time bu�er (after accounting for actual

ground-time) should not a�ect operating performance, the �gure in fact shows clear evidence

that the departure delay is greater when scheduled time bu�er is larger!

Parkinson's law and theories of procrastination o�er one obvious behavioral approach to

understand the �unusual� relationship between scheduled time bu�ers and operating perfor-

mance. Speci�cally, such theories (perhaps in a half-serious vein) argue that work expands to

2http://www.transtats.bts.gov/tables.asp?DB_ID=120&DB_Name=&DB_Short_Name= (last ac-
cessed February 26, 2014).
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�ll the available time, and thus suggest that scheduling larger time bu�ers may not just fail to

improve operating performance, but may in fact reduce it (for instance, see Schonberger 1981,

Gutierrez and Kouvelis 1991a, Rand 2000, Goldratt 1997). While the behavioral Parkinson's

law might be one of the reasons, we propose an alternate formal operational model that has

a key implication that once we account for operational �exibility, the exact same relationship

between scheduled bu�ers and operating performance will appear by virtue of �rm attempt-

ing to minimize operating costs. Thus, our formal model and its results demonstrate that

what might appear to be a behavioral phenomenon can just as easily emerge as the outcome

from a pro�t maximizing (or cost minimizing) �rm's rational decision-making.

Still, given that the evidence of the relationship between scheduled bu�ers and operating

performance does not allow us to discriminate between our rational operational model and

other behavioral models of procrastination (such as Parkinson's law), we also explore addi-

tional implications of our model and o�er a set of theoretical propositions about how the

time bu�ers (actual and scheduled) interact with other operational variables in determining

operating performance. Speci�cally, only our model predicts that �exibility of an operating

system moderates the degree to which time bu�ers in�uence operating performance, and

that with greater �exibility the e�ect of both scheduled and actual time bu�er is smaller.

These predictions are then tested with the airline data to compare the empirical content

of our model (versus theories of procrastination). Our results bear out the key theoretical

predictions of our model, and thus demonstrate that what seems to be a conventional case

of Parkinson's law might in fact be the optimal behavior of an operating system. Moreover,

the speci�c empirical results we �nd - the impact of bu�ers on performance depends on the

operational �exibility - highlights the importance of understanding the extent of operational

�exibility when ex-ante allocating bu�ers.

The rest of the article is organized as follows. In §2, we give a selective review the vast

literature on planning in operating systems and time bu�er management. Next, an analytical

model of operational �exibility and time bu�ers is o�ered in §3, and its implications are
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elucidated. §4 o�ers an empirical test of our key predictions. Finally, §5 o�ers a discussion

of the practical signi�cance of our �ndings, both for the case of general operating systems

and for the speci�c case of the domestic airline industry, and concludes with some suggestions

for future research. All proofs are provided in Appendix A and supplementary results are in

Appendix B.

2 Literature Review

Our work broadly is related to three areas: (i) studies in project management (planning),

and Parkinson's law and procrastination, and (ii) the large body of literature related to

�exibility in operational systems, and (iii) research in airline industry that examines �ight

delays and its causes.

In project management, planners routinely include safety bu�ers above and beyond the

actual time needed to complete the task so as to improve the probability of completing a

task on time. However, this may result in two critical issues. First, adding such bu�ers could

result in beginning the task as late as possible (the student syndrome or procrastination),

or second, even increasing the amount and complexity of the task itself. Consequently, the

addition of safety bu�er may not serve its intended purpose, and the task may get delayed

nevertheless. As discussed in Goldratt (1997), delays in a speci�c task's completion are

passed on to the entire project whereas bene�ts from a task �nishing early are rarely passed

on. Goldratt (1997) proposes the critical chain method to address some of these problems.

The impact of introducing time bu�ers has also received attention in the literature related

to Parkinson's law (Gutierrez and Kouvelis 1991b), and more generally, theories of procrasti-

nation, i.e., behavioral approaches to understanding how planned safety time (bu�ers) relate

to performance. Speci�cally, such theories claim that work expands to �ll the available bu�er

time, and thus suggest that scheduling larger time bu�ers may not achieve their intended

result of reducing operational delays (Schonberger 1981, Gutierrez and Kouvelis 1991a, Rand

2000, Goldratt 1997). In similar vein, other studies consider time-inconsistent preferences
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to demonstrate that people will often put o� work for later (Akerlof 1991, Laibson 1997,

O'Donoghue and Rabin 1999, 2001), and in some cases till the task deadline is too close

resulting in task abandonment. From the psychology side, researchers have looked at slack

and its e�ect on procrastination and found that slack (or lack of constraints) can in�u-

ence the extent of procrastination (Shu and Gneezy 2010). Indeed, Ariely and Wertenbroch

(2002) argue that this very behavioral trait might result in people being willing to self-impose

meaningful deadlines to overcome procrastination and hence reduce delays. Zauberman and

Lynch Jr (2005) make the argument that potential for future slack results in people deferring

more work, and that this can lead to procrastination (and delays) when tasks have a greater

slack.

Our paper is also related to the extensive work in operations management that examines

the value of operational �exibility. Jordan and Graves (1995) is one of the seminal papers that

demonstrates the value of �exibility in an operating system. Building on this paper, Graves

and Tomlin (2003) demonstrates how to analyze the bene�ts of process �exibility in multi-

product supply chains facing uncertain demand. Van Mieghem (1998) considers the question

of investing in �exible resources as a function of costs, prices, and demand uncertainty across

two products. Van Mieghem (1998) argues that, contrary to conventional wisdom, investing

in �exible resources is advantageous even when demand is perfectly positively correlated

across the two products. In this paper we use a notion of resource �exibility similar to that

in Van Mieghem (1998), and also model our cost function similarly. One of the important

contributions of our paper is that we empirically demonstrate that impact of constraints

(like start time and deadlines) on operational performance depends on the �exibility, and

consequently the choice of bu�er availability needs to be guided by an understanding of the

amount of �exibility in the system.

Lastly, since we use data from the airline industry to build and test our empirical models,

our study also o�ers insights into delay propagation in (airline) networks and its impact on

operational performance. Several papers in this area (Mayer and Sinai 2003, Deshpande and
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Arikan 2012, Arikan et al. 2013) have developed models of �ight delays and its antecedents.

Indeed, the importance of managing delays requires airlines to routinely perturb their sched-

ules to improve operational performance by adjusting their �ight block-times and ground-

times (Sohoni et al. 2011, Arikan et al. 2013). Our results, in addition to being statistically

signi�cant, show that an economically signi�cant part of �ight delays is explained purely

by scheduling decisions and more speci�cally scheduled time bu�ers (which have not been

previously considered in past literature). Thus, our results highlight the role of operational

�exibility while scheduling and managing the ground-time slack in this industry.

3 Model Setup and Results

In this section we develop a stylized model that captures the key variable of operational �ex-

ibility to examine the impact of scheduled and actual time bu�ers on operating performance.

Suppose that the following sequence of planning events occur at the focal �rm. First, the

�rm determines and publishes its schedule, which comprises the scheduled start time and

the deadline for a given activity. Let T denote the scheduled time bu�er, i.e., the time from

scheduled start time to the deadline. For modeling purposes we assume that the activity can

be completed in K time units with minimal cost, i.e., the K represents the base-line time

required to complete the activity.

Given the uncertainty associated with the operating system under consideration, we shall

assume that the actual (available) time bu�er, represented by t, may be di�erent from T .

We assume that the actual bu�er time, t, is random and is distributed as T + t0, where t0 is

a random variable. Once the scheduled times are published, and T and the distribution of t

are known, the planner may ex-ante (i.e. during the planning stages) choose to reduce the

base time K by δ1 time units so as to complete the tasks in K − δ1 time units. For example,

the planner can do so by ex-ante allocating additional resources. Similar to Van Mieghem

(1998) we assume that the cost of reducing completion time (allocating additional planned

resources) is linear in δ1, i.e., c · δ1.
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Figure 2: Sequence and timing of events and key variables.

Subsequently, during real-time operations, once t is realized, the planner may have an

additional opportunity to deploy additional resources and reduce the completion time by an

additional δ2 time units. Let the cost of this real-time reduction in activity time be given

by c · (1 + θ) · δ2. In this model, we interpret the θ parameter in terms of the amount of

�exibility of the operating system, where a high θ corresponds to a larger cost, i.e, lower

�exibility. Thus, the service can complete in time K − δ1 − δ2 for a given t. This implies,

that for a given t the delay is given by d = K − δ1 − δ2 − t. Figure 2 graphically illustrates

the sequence of events and the de�nitions of our key variables.

We assume that delay is costly only when it is positive (i.e., �nishing the service before

the deadline o�ers no bene�ts). That is, we normalize the delay cost to max {d, 0}. In this

setup the goal of the focal �rm is to minimize the total costs; i.e., the sum of ex-ante costs

cδ1 and ex-post costs c (1 + θ) δ2 and the delay costs max {d, 0}. This optimization problem

may be solved as follows.

In the second stage, after the actual time bu�er t has been realized, the �rm chooses δ2

according to the following minimization problem:

min
δ2

(K − δ1 − δ2 − t)+ + c(1 + θ) δ2, (1)

s.t. δ2 ≥ 0. (2)
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We summarize the optimal values of δ?2 and d? in Lemma 1.

Lemma 1. The optimal solution to (1)-(2) is given by

δ?2 =


max{0, K − δ1 − t} : c(1 + θ) < 1,

0 : c(1 + θ) ≥ 1

, (3)

and the corresponding delay d? is given by K − δ1 − δ?2 − t.

The proof of Lemma 1 is straightforward. Hence, for brevity, we skip the details. Lemma

1 helps us roll back the second stage ex-post decision and to analyze the ex-ante expected

total cost, TC.

First, consider the case when c(1 + θ) < 1. In this case

TC = (d?)+ + cδ1 + c(1 + θ)δ?2

= c
(
δ1 + (1 + θ)((K − δ1 − t)+

)
. (4)

Hence, the expected total cost, E[TC], is given by

E [TC] = c
(
δ1 + (1 + θ)E

[
(K − δ1 − t)+

])
= cδ1 + c(1 + θ)E

[
(K − δ1 − T − t0)+

]
. (5)

Second, consider the case when c(1 + θ) ≥ 1. In this case

TC = (d?)+ + cδ1 + c(1 + θ)δ?2

= (K − δ1 − t)+ + cδ1, and (6)

E [TC] = cδ1 + E
[
(K − δ1 − t)+

]
. (7)

Note that in either case, the the �rm's ex-ante optimization problem that allocates the
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ex-ante resources δ1 is given by

min
δ1

E [TC] , (8)

s.t. δ1 ≥ 0. (9)

To characterize the optimal solution to (8) we �rst show that that E [(K − δ1 − T − t0)+] is

supermodular in (δ1, T ) in Theorem 1.

Theorem 1. E
[
(K − δ1 − T − t0)+

]
is supermodular in (δ1, T ).

The proofs of all theorems are given in Appendix A.

Notice that, using Theorem 1, it is easy to verify that the second term in ((7) and (5)),

i.e., the expected total cost, is also supermodular in (δ1, T ). An immediate implication

of Theorem 1 is that the optimal, ex-ante, time reduction δ?1 (T ) is decreasing in T . We

summarize this result in Theorem 2.

Theorem 2. As a solution to (1) the optimal delay d? is decreasing in t and increasing in

T .

To illustrate Theorem 2 consider the following concrete example. Let t0 be uniformly

distributed in [tL, tH ]. For clarity, we represent both δ
?
1 and d

? as function of T. In this case

we have

δ?1(T ) =


K − T − c(tH−tL)

1+θ
− tL : c(1 + θ) < 1,

K − T + c (tH − tL)− tL : c(1 + θ) ≥ 1,

(10)

and

d?(T ) =


min

{
0, T + c(tH−tL)

1+θ
+ tL − t

}
: c(1 + θ) < 1,

T + c (tH − tL) + tL − t : c(1 + θ) ≥ 1.

(11)
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Figure 3: d?(T ) and d?(t) when c = 1, θ = 0.5, and t0 is distributed uniformly in [0, 60].

Notice that, in equations (10) and (11), δ?1(T ) is decreasing in T and d?(T ) is increasing

in T . Additionally, d?(T ) is decreasing in t. We illustrate this in Figure 2 where c = 1,

θ = 0.5, tH = 60, tL = 0. The plot in Figure (3a) shows the the optimal delay, d?(T ), as T

varies from 60 minutes to 90 minutes and t = 30 minutes. The plot in Figure (3b) shows

the optimal delay as a function of t, d?(t), as t varies from 30 to 60 minutes when T = 60

minutes.

Thus, our model, albeit stylized, demonstrates that the optimal delay is a decreasing

function of actual time bu�er, and more interestingly that the optimal delay is an increasing

function of scheduled time bu�er.

4 Empirical Validation and Robustness Tests

Our model of operational �exibility and delays, while parsimonious, is consistent with the

actual empirical data (shown in Figure 1) that motivated this study. Still, it is to be noted

that this (operational) model is not the only way to explain away the �unusual� positive

correlation between scheduled slack and delays. Speci�cally, a more behavioral model of

(time-inconsistent preferences and) procrastination also appears to be consistent with Figure

1. However, our formal model also allows us to go beyond the �rst order direct e�ects

and predicts an interaction between �operational �exibility� and scheduled/actual slack; a
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Figure 4: Flight sequence within an aircraft rotation depicting scheduled and actual ground-
time bu�ers.

prediction that is unique to our model. The focus of this section is to o�er an empirical

examination of the predictive power of our model in explaining delays in operating systems

versus alternate plausible explanations.

As noted earlier, while our model is meant to capture general operating systems where

planned and actual slacks might di�er, for the empirical test we focus on the airline industry

in the US for two reasons: First, Federal Aviation Authority (FAA) requires and collects

data on almost every commercial airline's operating schedule and actual arrival/departure

time, which gives us access to an industry-wide large data set without having to concern

ourselves with poor quality data or any selection bias. Airlines track and report �ve segments

of the travel time for each of their �ights to the FAA: (i) departure delay, (ii) taxi-out, (iii)

air-time, (iv) taxi-in, and (v) arrival delay. This information is publicly available through

the BTS website. Our sample is almost the entire population of civilian domestic �ights

operated by airlines in the US that account for at least 1% of the total domestic scheduled

service passenger revenues3. Second, in the airline industry, the actual task that we shall

empirically examine, namely servicing and getting the aircraft ready for it's next �ight, is a

more or less standardized task. This feature allows us to focus on the slacks and uncertainty

3https://www.oig.dot.gov/library-item/28632. Last accessed: December 22, 2014.
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inherent in operationalizing the plans and their e�ect on departure delays of �ights.

We begin by describing the key elements of the operating system in this industry that are

relevant to our study (interested readers may refer to some examples in Holloran and Byrn

1986, Chu 2007 for some additional details). First, the airline determines and publishes

its schedule. This schedule also speci�es which particular aircraft, identi�ed by their tail

numbers, operate which speci�c �ights in the network. The sequence of �ights operated by a

particular tail number is de�ned as the aircraft rotation (Barnhart and Cohn 2004). Figure 4

shows a sequence of inbound and outbound �ights, within an aircraft rotation, at a particular

station in an airline's network. The schedule also implicitly speci�es the scheduled ground-

time bu�er (T ), i.e. the scheduled time gap between the arrival and departure of consecutive

�ights in a rotation. There are several activities that must be completed during the scheduled

(actual) bu�er time to get the aircraft ready for departure on its next (outbound) �ight. Some

of these activities include de-boarding passengers, cleaning, catering, fueling, and other such

activities � some that can be done simultaneously and others that must be done sequentially.

Now, depending on scheduled ground-time and resource availability, the operating manager

at the airport decides on how to allocate resources to complete all these tasks on time, i.e.,

without delaying scheduled departures.

While the planned aircraft rotation lays out the scheduled time bu�er, and deadlines,

the actual arrival time of the aircraft, on the day of operation, is uncertain (Arikan et al.

2013). Thus, the actual ground-time available to complete the tasks could be di�erent from

the scheduled ground-time. The operating manager has the additional ex-post ability to

increase the resources and or prioritize particular tasks so as to minimize delays.

We use data from BTS website for all daily, domestic, �ights �own in the US from

January 2009 through December 2013. The full data set contains 31.5 million records of

�ights. While these records have data on the departure delay, to test our key interaction

hypothesis, we also need a measure for �exibility. While operating �exibility can depend

on number of di�erent variables, for the purposes of this empirical test, we shall primarily
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focus on a measure of utilization. We computed hourly �ight arrivals and departures at an

airport, for every airline, to estimate hourly utilization as a fraction of the maximum hourly

arrivals and departures during the day. That is, we create the Utilization variable as

Utilization (for an airline at an airport

for a given day at a speci�c hour)
,

Number of arrivals and

departures in that hour

Maximum of the number of hourly

hourly arrivals and departures during the day

. (12)

This measure of utilization, while admittedly crude, allows us to develop a proxy for opera-

tional �exibility4 as

Flexibility , (1− Utilization) . (13)

Finally, past research indicates that overall airport congestion has a signi�cant e�ect

on each airlines operating performance (Rosenberger et al. 2002, Lapré and Scudder 2004,

Deshpande and Arikan 2012, Arikan et al. 2013). The hourly airport congestion was com-

puted using the total number of �ights, across all airlines, operating from the airport and the

maximum airport arrival and departure capacity5. This congestion variable is, in addition

to its theoretical importance, is necessary for us since our �exibility variable is likely to be

correlated to utilization, and thus makes interpreting our results di�cult. Hence, we shall

explicitly control for congestion in our empirical tests and verify that our �exibility variable

has additional predictive power above and beyond what is already explained by congestion.

Next, after creating the �exibility and congestion variables, out of of full data set of 31.5

4Note that most models of operating systems, including for instance queuing models, predict that higher
utilization of available capacity makes any marginal increase in utilization more costly. Consistent with these
models, �exibility in our analytical model (the θ parameter) captures the marginal cost in exerting e�ort,
and thus greater utilization (which by de�nition) decreases our �exibility variable has the e�ect of increasing
the cost in our stylized model.

5Data for each ASPM (Aviation System Performance Metrics) airport is available on FAA's Operations
and Performance data website http://aspm.faa.gov. For non-ASPM airports the capacity was estimated
using the maximum number of hourly �ights in a given month (last accessed in January, 2014).
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million, 0.5 million (1.5%) were removed either because of missing tail numbers, or because

they were canceled �ights. Next, using this data we built aircraft rotations6 for each aircraft,

and computed actual slack available for each �ight in the rotation, t, as the di�erence between

the scheduled departure time of the �ight and the actual arrival time of the previous �ight

in the rotation (similar to Arikan et al. 2013). Similarly, the scheduled ground-time, T , for

each �ight was computed as the di�erence between the scheduled departure of �ight and the

scheduled arrival of the preceding �ight in the rotation.

We removed records with missing scheduled or actual block times, or �ights that were

diverted (reducing the number of �ights to 30.88 million). In addition, since we do not want

outliers to in�uence our estimates, we also trimmed the data dropping the top and bottom

5% of departure delay, scheduled and actual time slack7. This resulted in 8.6 million less

records (28%)8. This �nal cleaned data has 22.2 million observations, operated by 20 unique

airlines from 332 distinct airports. Descriptive statistics of the data are given in Table 1.

Mean std dev

Flexibility = 1-Utilization 30.7 23.7
Congestion 65.7 20.6

Actual time slack t 156.1 201.3
Scheduled time slack T 157.3 204.5
Departure delay D 2.6 12.0

Table 1: Descriptive statistics of the airline data.

Next, we dropped all �ights which had a greater than 150 minutes of slack (actual or

scheduled) or less than 20 minutes of slack (actual or scheduled). These cuto�s, while

somewhat arbitrary, allow us to focus was on understanding how the (scheduled and actual)

slack a�ect delays in those interesting (and possibly more generalizable) cases where the

slack is neither too small nor too large9. This �nal data that we employ in our empirical

6An aircraft rotation is a sequence of �ights �own by a speci�c aircraft.
7These variables showed some extreme outliers. For instance, the maximum departure delay in the BTS

data was 2445 minutes (40 hours)! Since this is likely the result of data error, we chose to be conservative
and use only the trimmed data.

8Robustness checks which eliminated fewer (1%) yields similar results.
9Moreover, 20 minutes of ground-time is the industry standard for minimum slack, and the small number

14



test has 15.4 million �ights, by 20 carriers, operating out of 327 airports.

Our theoretical model makes two key predictions: (i) direct e�ect of t and T : the delay

decreases in actual time slack t and increases in scheduled time slack T , and (ii) interaction

of �exibility and t, and of �exibility and T : delay is less a�ected by t when �exibility is

high, and delay is less a�ected by T when �exibility is high (i.e., the interaction term for t

and �exibility has a positive coe�cient, and the interaction term for T and �exibility has

a negative coe�cient). Our empirical model, given below, controls for airline, airport, and

time �xed e�ects and examines how the departure delay of each �ight is a�ected by the

actual and scheduled time slacks (t and T ) and their interaction with �exibility.

Delay = Airport+ Airline+Month×Year+ Flexibility+ Congestion+ T + t+ Flexibility×T

+Flexibility×t.

Table 2 presents the results of our regression. As may be observed, Model 1.1 demon-

strates that the e�ect of t and T that motivated the study is remarkably robust and is highly

signi�cant. Speci�cally, a 1 minute decrease in the actual slack increases the departure delay

by 0.23 minute; whereas a 1 minute decrease in scheduled slack decreases the departure delay

by 0.20 minutes. More interestingly, as Table 2 demonstrates, when we compare between

Model 1.0 (which only includes controls that have been found in past literature to have a

signi�cant in�uence) and Model 1.1 (which in addition also includes actual and scheduled

time slack), the R2 goes from 4.8% to 14.5%. Note that this 200% increase in explained

variance comes from just two of the operational time slack variables that we have included.

Thus, it appears that the e�ect of actual and scheduled slacks are not merely statistically

signi�cant, but are signi�cant from a practical perspective and crucial in determining the

of �ights with less than this minimum value are possibly due to errors in data entry. In addition, the upper
cut o� allows us to avoid biasing our results. Speci�cally, many of the �ights with excessive ground time are
at the beginning of the rotation. Hence, we cannot infer from the data the scheduled/slack slack since even
with a scheduled ground time of say 5 hours, it is unlikely that an airline would plan the start of the servicing
activity this early. Still, we did conduct robustness checks by choosing a di�erent threshold - 10 ≤ t ≤ 200
and 10 ≤ T ≤ 200 - and found identical results.
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Model 1.0 Model 1.1 Model 1.2

Intercept −3.5255‡(0.2216) −0.7686†(0.2102) −0.7132†(0.2103)
Congestion 0.0086‡(0.0002) 0.0074‡(0.0002) 0.0073‡(0.0002)

Flexibility (=1−utilization) −0.0068‡(0.0001) −0.0081‡(0.0001) −0.0100‡(0.0003)
t - −0.2282‡(0.0002) −0.2441‡(0.0003)
T - 0.1966‡(0.0002) 0.2129‡(0.0003)

Flexibility×t - - 0.0005‡(0.00001)
Flexibility×T - - −0.0006‡(0.00001)

Airline, Airport,
Month×Year controls YES YES YES

R2 0.048 0.145 0.145

Table 2: Regression results.
‡ p < 0.0001; † p < 0.001

delays.

Results shown in model 1.2 (shown in Table 2) are consistent with our full set of pre-

dictions - namely, the coe�cient for the interaction of �exibility and actual time slack is

negative and the coe�cient for the interaction of �exibility and scheduled time slack is pos-

itive. Thus, delays decrease in actual time slack t, but at a smaller rate when �exibility

is high; and delays increase in scheduled time slack T , but at smaller rate when �exibility

is high. These interaction results allow us to rule out the simpler behavioral (�irrational�)

explanations of why time slack has an e�ect on delays and o�er evidence for the empirical

content of our model of operational �exibility10.

While the key results in Table 2 are consistent with our theoretical model, the empirical

measure of �exibility that we employed might conceivably bias our results. For instance, the

�exibility measure being a ratio, might be prone to error if the denominator (i.e., maximum

number of �ights per hour operated from the given airport an airline is a small number

(since in such a situation, the �exibility measure possibly fails to take too many values

10This is not to claim that more complex behavioral explanations can be ruled out. For instance, a model
of procrastination where deferring work is also related to �exibility would be consistent with the results.
Still, in our empirical model, the �exibility is the actual �exibility, and not anticipated �exibility. Thus, it
appears that such a model of procrastination would also need agents whose beliefs about future �exibility
need to correlated to true realized �exibility. While this is possible, we believe that our model of operational
�exibility and optimal resource allocation o�ers a signi�cantly simpler and consistent theory for our empirical
results.
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between 0 and 100%). To ensure robustness, we took a two-pronged approach. First, we

re-estimated the regression equation after dropping all �ights where the maximum obtained

was too low (< 5) for us to reliably estimate the �exibility measure. Estimates, which are

shown in Table 3 of the ancillary appendix, demonstrate clearly that our key results remain

unchanged. Second, instead of using a ratio to measure �exibility, we de�ned an alternate

measure of �exibility - namely, capacity slack - de�ned as

Flexibility (for an airline

at an airport for a given

day at a speci�c hour)

,

Maximum of the

number of hourly

arrivals and departures

during the day

−

Number of arrivals

and departures

in that hour

. (14)

Estimates of the e�ect of scheduled and actual time slack when �exibility is measured using

the above de�nition are summarized in Table 4 of the ancillary appendix. Our results are

robust and are fully consistent with theoretical model.

5 Discussion and Concluding Remarks

The current study was motivated by the fundamental issue of understanding how bu�ers

in an operating system a�ect its performance. While the study of bu�ers in a variety of

contexts and its optimal management has occupied a signi�cant part of operations man-

agement research, there appears to be not much (empirical or theoretical) research that

has examined our research question. Moreover, even in the research that has attempted to

understand the impact of bu�ers on performance, behavioral theories and Parkinson's law

feature prominently. For instance, the conventional wisdom in project management relies

on the so-called �student syndrome� and theories of procrastination to argue that scheduling

larger time bu�er does not improve and may in fact decrease operating performance (see for

example, Gutierrez and Kouvelis 1991b).

Our main contribution in this article is two fold: (i) We o�er a simple and highly stylized

model of how operational �exibility interacts with time bu�ers to determine operating per-
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formance. The model is subsequently shown to imply the very same empirical patterns as

implied by the behavioral theories of time bu�ers. Thus, our rational model o�ers a plausible

alternative to the conventional behavioral theories that have been typically employed in past

literature. (ii) We explicitly test our normative model against the conventional behavioral

theories using data from airline industry, and we demonstrate that (at least in this context)

the data is consistent with our rational model. Speci�cally, we show theoretically that our

model implies an interesting interaction between operational �exibility and time-bu�ers, and

that the e�ect of time bu�ers on operating performance depends on the operational �exibil-

ity. This implication, as it is not predicted by behavioral theories, allow us to do a cleaner

test and results consistent with with our model are obtained.

Our results, at a general level, highlight the importance in understanding �exibility at

the operational level, when choosing the optimal schedules. Speci�cally, a planning ap-

proach that does not account for �exibility at the operational level and tries to optimize

some combination of cost/utilization and revenue/on-time-performance will end up creating

schedules that are too costly and/or schedules that are poor in revenue/on-time-performance

(since those who have �exibility react di�erently compared to those without). To improve

outcome performance measure (such as on-time-performance), operating systems that lack

�exibility should be constrained more (by scheduling lower time-bu�ers) whereas those that

have signi�cant �exibility should be constrained less. Thus, our results suggest that it is

the relative weight that the �rm places on the outcome and input (cost) measures, and the

relative �exibility of the di�erent parts of the operating system that determines the optimal

schedule (and time bu�ers).

While our concern for the most part has been on developing a highly stylized model and

testing it. it is still useful to note that for the speci�c case of airline industry that motivated

our model and empirical tests, the current study o�ers at least two important implications.

Firstly, it has long been assumed that one of the key reasons for �ight delays and lower

operating performance is congestion at airports and the consequent negative externality (for
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example, see Rosenberger et al. 2002, Mayer and Sinai 2003). While we �nd that externalities

imposed by congestion does play a role (Table 3), a much larger role is played by an airline's

own scheduling choices. Speci�cally, Table 3 shows that, in our data, congestion going from

0 to 100 has a similar e�ect as a mere additional 5 minutes (increase) of actual slack or an

additional 5 minutes (decrease) of scheduled slack! Moreover, the dramatic increase in R2

(by over 200%) when actual and scheduled slacks are added demonstrate that the part of the

variance explained by the actual operating schedules is much larger compared to congestion,

airline, airport, and time taken together. Thus, for future research work that attempts to

evaluate the role of congestion public policy or airline operations probably should account

for an airline's own operational scheduling decisions.

Secondly, to the extent that on-time-performance is an important competitive dimension

(as suggested by Deshpande and Arikan 2012), our results suggest that the di�erences be-

tween airlines on their on-time-performance measures may not be coming about primarily

because of their routes (speci�c airports they �y into, or the speci�c airports they �y out of),

or because of congestion, or because of their network structure; but that (a large part of) the

di�erences in operating performance may be traced back to the operating schedules and more

speci�cally to the scheduled and actual time bu�ers that have been allocated. Consequently,

if the goal is to improve operating performance, the airlines might be better served by im-

provements in their planning (that accounts for operating �exibility) compared to broader

strategic changes (such as changes to routes, or adding capacity at speci�c airports, etc).

While our theoretical model was developed with a general operating system in mind, our

empirical focus in this article was on the context of �ight delays and ground-time bu�ers.

This empirical focus is mostly pragmatic (since the data are readily available). However, our

�ndings may be applicable to wider contexts and deserves more investigation. For instance,

consider a manufacturing or a project management setting. A plan, in these cases, implicitly

speci�es the scheduled time bu�er for each activity and their completion deadlines, whereas

the actual time bu�er available might change depending on the uncertainty associated with
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preceding activities or uncertain availability of crucial resources. Overall, our results suggest

that to manage operational performance one needs to understand both the direct e�ect of

time bu�ers and the role of resource �exibility in determining both the sign and magnitude

of the e�ect of time bu�ers.
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A Main Appendix

Proof of Theorem 1.

Proof. It is easy to verify that φ(λ) = E
[
(λ− t0)+

]
, is a convex function in λ. To do so,

let p(x) denote the probability density function of t0 and P (x) denote the corresponding

cumulative density function. Thus,

φ(λ) =

ˆ ∞
−∞

max{0, λ− x} p(x) dx

=

ˆ λ

−∞
(λ− x) p(x) dx. (1)

Notice that from (1), the derivative with respect to λ, d
dλ
φ(λ) = P (λ) > 0, and the second

derivative d2

dλ2
φ(λ) = p(λ) ≥ 0. The supermodularity of E [(K − δ1 − T − t0)+] in (δ1, T )

follows immediately once we substitute λ = K − δ1 − T and verify that the cross-partial

derivative term ∂2

∂T∂δ1
E [(K − δ1 − T − t0)+] is non-negative.

Proof of Theorem 2.

Proof. The proof follows immediately by recalling that d? = min {0, K − δ?1(T )− t} and

Theorem 2.8.1 in Topkis (1998).
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B Ancillary Appendix: Robustness Tests

Model 2.0 Model 2.1 Model 2.2

Intercept −2.97‡(0.1718) −0.1072 (0.1635) 0.0777 (0.1638)
Congestion 0.00674‡(0.0002) 0.0045‡(0.00023) 0.0044‡(0.00023)

Flexibility (=1-Utilization) −0.0094‡(0.0002) −0.0115‡(0.0002) −0.01709‡(0.0004)
t - −0.2179‡(0.0002) −0.2348‡(0.00034)
T - 0.186‡(0.00022) 0.2014‡(0.00037)

Flexibility×t - - 0.00057‡(0.00001)
Flexibility×T - - −0.00051‡(0.00001)

Airline, Airport,
Month×Year controls YES YES YES

R2 0.046 0.137 0.137

Table 3: Regression results with at least 5 �ights/hour/airline.
‡ p < 0.0001; † p < 0.001

Model 3.0 Model 3.1 Model 3.2

Intercept −4.0619‡(0.2215) −1.3505‡(0.2101) −1.5652‡(0.21)
Congestion 0.0145‡(0.0002) 0.0138‡(0.0002) 0.0141‡(0.0002)

Flexibility (=Capacity Slack) 0.0097‡(0.0004) 0.0077‡(0.0004) 0.0401‡(0.0008)
t - −0.2281‡(0.0002) −0.2416‡(0.0002)
T - 0.1960‡(0.0002) 0.2148‡(0.0002)

Flexibility×t - - 0.0017‡(0.00002)
Flexibility×T - - −0.0023‡(0.00002)

Airline, Airport,
Month×Year controls YES YES YES

R2 0.048 0.144 0.145

Table 4: Regression results (with Capacity Slack).
‡ p < 0.0001; † p < 0.001

It is noteworthy that the results in Table (3) hold even if we consider airlines who operate

at least 5 �ights from any given station. The sign of the coe�cient for slack is unexpectedly

positive. However, note that the way we measure slack (see de�nition in equation 14) will be

positively correlated with our measure of congestion (based on the ratio of number of �ight

to maximum for all airlines). Since the coe�cient on congestion is negative, to �nd the net

e�ect of slack, we need to do a regression without the congestion variable. This is shown in

table 5. As may be veri�ed, as capacity slack increases, the departure delay decreases.
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Dependent variable: Departure Delay

Intercept −0.5266 (0.209)
Flexibility (=Capacity Slack) −0.0059‡(0.00035)

t −0.2281‡(0.0002)
T 0.1959‡(0.0002)

Airline, Airport,
Month×Year controls YES

R2 0.144

Table 5: Regression results (with Capacity Slack) and with at least 5 �ights/hour/airline.
‡ p < 0.0001; † p < 0.001
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